
Intro to Computer Science with Python 
Scope and Sequence 

The CodeHS introduction to Python course teaches the fundamentals of 
computer programming as well as some advanced features of the Python 
language. Students use what they learn in this course to build simple 
console-based games. This course is equivalent to a semester-long 
introductory Python course at the college level. 

 

Module 1: Introduction to Programming with Tracy the Turtle 

15 hours (3 weeks)  Students are introduced to the Python programming language by 
learning to use various commands and control structures to write 
programs that will create graphical designs. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly named variables that represent different data types and perform 
operations on their values. 
 
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that 
can be applied to a solution. 
 
3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal, 
expression, or to address a societal issue by using events to initiate instructions. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations or data and 
procedures, or independent but interrelated programs. 

 
 

Module 2: Basic Python and Console Interaction 

15 hours (3 weeks) 
 

Students learn the basics of programming by writing programs that 
incorporate interaction using a keyboard. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 



implementation, and review of programs 
 
3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that 
can be applied to a solution. 

 
 

Module 3: Control Flow 

50 hours (10 weeks)  Students learn how to teach their programs to make decisions based on 
the information it receives. They will learn how to decompose programs 
into smaller pieces that work together to solve a problem. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly names variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 

 
 

Module 4: Strings 

15 hours (3 weeks)  Students learn more sophisticated strategies for manipulating text in 
programs - slicing, concatenating, and formatting. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly names variables that represent different data types and perform 
operations on their values. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 



implementation, and review of programs. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 

 
 

Module 5: Data Structures 

30 hours (6 weeks)  Students will build more complex programs that make use of lists, grids, 
and dictionaries. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly names variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 
 
3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of 
repeatedly using simple variables. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 

 
 

Module 6: Project- Hangman 

15 hours (3 weeks)  Students use the skills they’ve learned in the first four modules to build 
the game Hangman. 

CSTA Standards Addressed 



 
2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 
 
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of 
repeatedly using simple variables. 
 
3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal, 
expression, or to address a societal issue by using events to initiate instructions. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations or data and 
procedures, or independent but interrelated programs. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 

 
 

Supplemental: Module 7: Classes and Objects 

30 hours (6 weeks)  Students learn the principles of object-oriented design. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly names variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 



computational artifacts. 
 
3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of 
repeatedly using simple variables. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-centered component, such as 
procedures, module, and/or objects. 
 
3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that 
can be applied to a solution. 

 
 

Supplemental: Module 8: Project- Who Said it? 

15 hours (3 weeks)  This final project allows students to combine a variety of topics in a 
single program, utilizing file reading, top down design, and debugging 
skills. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly names variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-13 Decompose problems and subproblems into parts to facilitate the design, 
implementation, and review of programs. 
 
2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing 
computational artifacts. 
 
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of 
repeatedly using simple variables. 
 



3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal, 
expression, or to address a societal issue by using events to initiate instructions. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations or data and 
procedures, or independent but interrelated programs. 
 
3A-AP-23 Document design decisions using text, graphics, presentation, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-centered component, such as 
procedures, module, and/or objects. 
 
3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that 
can be applied to a solution. 

 


