
CodeHS
AP Computer Science Principles in Python Course Syllabus
One Year for High School, 125 Hours

Introduction

AP Computer Science Principles is the newest AP® course from the College Board. This course
introduces students to the foundational concepts of computer science and explores the impact
computing and technology have on our society.

With a unique focus on creative problem solving and real-world applications, the CodeHS AP
Computer Science Principles course gives students the opportunity to explore several important
topics of computing using their own ideas and creativity, use the power of computing to create
artifacts of personal value, and develop an interest in computer science that will foster further
endeavors in the field.

Course Overview

Prerequisites: There are no official prerequisites for the CodeHS AP Computer Science
Principles course. This course is meant to be a first-time introduction to computer science and
does not require students to come in with any computer programming experience. However, we
recommend that students take our Introduction to Computer Science prior to our AP courses
(more info at codehs.com/library). Students who have completed our Intro to CS course will be
able to apply knowledge of concepts covered in the Intro course to the more advanced setting of
the AP courses. We also recommend that students complete a first-year high school algebra
course prior to taking this course. Students should be comfortable with functions and function
notation such as f(x) = x + 2 as well as using a Cartesian (x, y) coordinate system to represent
points in a plane.

Overarching Goals:
● Increase and diversify participation in computer science
● Students, regardless of prior experience in computing, will develop confidence using

computer science as a tool to express themselves and solve problems, and this
confidence will prepare them for success in future endeavors in the field of computer
science

● Students will understand the core principles of computing, a field which has and
continues to change the world

● Students will be able to develop computational artifacts to solve problems, communicate
ideas, and express their own creativity

● Students will be able to collaborate with others to solve problems and develop
computational artifacts

1

http://codehs.com/library

● Students will be able to explain the impact computing has on society, economy, and
culture

● Students will be able to analyze existing artifacts, identify and correct errors, and explain
how the artifact functions

● Students will be able to explain how data, information, or knowledge is represented for
computational use

● Students will be able to explain how abstractions are used in computation and modeling
● Students will learn to be informed and responsible users of technology

Learning Environment: The course utilizes a blended classroom approach. The content is a mix
of web-based and physical activities. Students will write and run code in the browser, create
websites and digital artifacts, and engage in in-person collaborative exercises with classmates.
Teachers utilize tools and resources provided by CodeHS to leverage time in the classroom and
give focused 1-on-1 attention to students. Each unit of the course is broken down into lessons.
Lessons consist of video tutorials, short quizzes, example programs to explore, written
programming exercises, free response exercises, collaborative creation projects, and research
projects.

Programming Environment: Students write and run programs in the browser using the CodeHS
editor. Students will be able to write text-based Python programs, and students will use a
graphics library to create Python graphical programs. Students gain programming experience
early on in the course that will enable them to explore the rest of the course topics through
computational thinking practices.

Course Resources: Access to a computer and high-speed internet is required. There is also an
online textbook available for many modules and topics which can be accessed through the
lesson plans or at https://codehs.gitbooks.io/introcs/content/

Quizzes: At the end of most units, students take a summative multiple choice unit quiz in the style
of the AP Exam that assesses their knowledge of the concepts covered in the unit. The course
also provides an AP Test Practice unit with a cumulative AP Practice Multiple Choice Test.

Course Objectives

This course is based directly on the College Board AP Computer Science Principles Framework.
We recommend reading the curriculum framework here for context. The main course objectives
are summarized below in the six computational thinking practices and five big ideas for the
course.

Computational Thinking Practices:
The six computational thinking practices represent important aspects of the work that computer
scientists engage in, and are denoted here by P1 through P6:

● Practice 1: Computational Solution Design
○ Design and evaluate computational solutions for a purpose.

2

https://codehs.gitbooks.io/introcs/content/
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-conceptual-framework-2020-21.pdf?course=ap-computer-science-principles

● Practice P2: Algorithms and Program Development
○ Develop and implement algorithms.

● Practice P3: Abstraction in Program Development
○ Develop programs that incorporate abstractions.

● Practice P4: Code Analysis
○ Evaluate and test algorithms and programs.

● Practice P5: Computing Innovations
○ Investigate computing innovations.

● Practice P6: Responsible Computing
○ Contribute to an inclusive, safe, collaborative, and ethical computing culture.

Big Ideas:
The five big ideas of the course encompass foundational ideas in the field of computer science,
and are denoted here by B1 through B5:

● Big Idea 1: Creative Development (CRD)
When developing computing innovations, developers can use a formal, iterative design
process or experimentation. While using either approach, developers will encounter
phases of investigating and reflecting, designing, prototyping, and testing. Additionally,
collaboration is an important tool to use at any phase of development because
considering multiple perspectives allows for improvement of innovations.

● Big Idea 2: Data (DAT)
Data is central to computing innovations because it communicates initial conditions to
programs and represents new knowledge. Computers consume data, transform data,
and produce new data, allowing users to create new information or knowledge to solve
problems through the interpretation of this data. Computers store data digitally, which
means that the data must be manipulated in order to be presented in a useful way to the
user.

● Big Idea 3: Algorithms and Programming (AAP)
Programmers integrate algorithms and abstraction to create programs for creative
purposes and to solve problems. Using multiple program statements in a specified order,
making decisions, and repeating the same process multiple times are the building blocks
of programs. Incorporating elements of abstraction, by breaking problems down into
interacting pieces, each with their own purpose, makes writing complex programs easier.
Programmers need to think algorithmically and use abstraction to define and interpret
processes that are used in a program.

● Big Idea 4: Computing Systems and Networks (CSN)
Computer systems and networks are used to transfer data. One of the largest and most
commonly used networks is the Internet. Through a series of protocols, the Internet can
be used to send and receive information and ideas throughout the world. Transferring
and processing information can be slow when done on a single computer but leveraging
multiple computers to do the work at the same time can significantly shorten the time it
takes to complete tasks or solve problems.

3

● Big Idea 5: Impact of Computing (IOC)
Computers and computing have revolutionized our lives. To use computing safely and
responsibly, we need to be aware of privacy, security, and ethical issues. As
programmers, we need to understand how our programs will be used and be responsible
for the consequences. As computer users, we need to understand how to protect
ourselves and our privacy when using a computer.

The AP Create Performance Task:
The through course assessment is a performance task designed to gather evidence of student
proficiency in the learning objectives. The AP Create Performance Tasks (PT) is an in-class
assessment, administered by the teacher, that allows students to exemplify their learning through
an authentic, “real-world” creation. In the Create Performance Task, students will design and
implement a program to solve a problem, enable innovation, explore personal interest, or express
creativity. Their development process should include exploration, investigation, reflection, design,
implementation, and testing your program.

Students will gain the experience necessary to complete the Create Performance Task in class.
Each unit comes with practice PTs in which students will research topics in computing, and create
their own digital artifacts. Sufficient time is set aside in the course for students to prepare for and
complete the Create Performance Task.

The AP Exam:
The AP Computer Science Principles end-of-course exam has consistent question types and
weighting every year, so you and your students know what to expect on exam day.

Section I: End-of-Course Multiple-Choice Exam
70 multiple-choice questions | 120 minutes | 70% of score | 4 answer options
● 57 single-select multiple-choice
● 5 single-select with reading passage about a computing innovation
● 8 multiple-select multiple-choice: select 2 answers

Section II: Create Performance Task: Written Responses
30% of score
● Create Performance Task program code, video, and student-authored Personalized
Project Reference | 9 hours in-class

● 4 written response prompts | 60 minutes end-of-course exam

The second section of the AP Computer Science Principles Exam consists of a through-course
Create Performance Task where students will develop a computer program of their choice and an
end-of-course written response section where students demonstrate their understanding of their
personal Create Performance Task by answering four prompts. Students will be provided 9 hours
of in-class time to complete their program, video, and develop a Personalized Project Reference.

4

Course Breakdown

Unit 1: Introduction to Programming with Karel the Dog (3 weeks, 15 hours)
This course begins with a strong focus on programming in order to allow students to create
computational artifacts early on in the course. Students will be able to use their knowledge of
programming to explore future topics in the course.

We use Karel, a dog that only knows how to move, turn left, and place tennis balls in his world, to
show students what it means to program, and allow students to focus on computational
problem-solving. Students will learn about the need for programming languages, the uses of
programs, how to write programs to solve computational problems, how to design algorithms,
how to analyze and compare potential solutions to programming problems, and learn the value
and challenges involved in collaborating with others to solve programming problems. Students
will use the grid coloring functionality of Karel to create a digital painting and embed this program
in their portfolio website.

Subsection EKs Lessons / Topics

Abstraction

Lessons:
Abstraction

AAP-3.B.1 AAP-3.B.7
AAP-3.B.2 CRD-2.G.1
AAP-3.B.3 DAT-1.A.2
AAP-3.B.4 DAT-1.A.5
AAP-3.B.6

Procedural Abstraction
Modularity
Program Reuse
Digital Data (Bits)
Reducing Complexity

Programming Style

Lessons:
Intro to Programming
Super Karel
Ultra Karel
Top-Down Design
Commenting Your Code

CRD-2.G.1 CRD-2.B.5
CRD-2.G.2 AAP-3.D.1
AAP-2.M.1 AAP-3.D.2
AAP-2.M.3 AAP-3.D.3
CRD-2.B.1 AAP-3.D.4
CRD-2.B.2 AAP-3.D.5

Program Documentation
Using Existing Code and Libraries
APIs
Commenting Code

Control Structures

Lessons:
If/Else Statements
For Loops
While Loops in Karel

AAP-2.G.1
AAP-2.J.1
AAP-2.K.1

If/Else Statements (Selection)
For Loops and While Loops
(Iteration)

Debugging Strategies

Lessons:

CRD-2.I.1
CRD-2.I.2
CRD-2.I.3
CRD-2.I.5

Logic Errors
Syntax Errors
Run-Time Error
Testing

5

Functions in Karel
Debugging Strategies

Designing Algorithms

Lessons:
Karel Algorithms

AAP-2.A.4 AAP-2.M.2
AAP-2.B.1 AAP-4.A.2
AAP-2.B.2 AAP-4.A.4
AAP-2.B.6 AAP-4.A.5
AAP-2.B.7 AAP-4.A.6

Sequencing, Selection, Iteration
Clarity and Readability
Using Existing Algorithms
Optimization and Efficiency

Example Activities and Big Idea/Computational Thinking Practice
The Two Towers: In this program, students have Karel build two towers of tennis balls. Each
tower should be 3 tennis balls high. In the end, Karel should end up on top of the second tower,
facing East. Students need to write at least 3 functions in order to solve this problem. This
activity requires students to design and create functions for repeated processes within their
program. Students need to consider top-down design and decomposition through the following
questions:

● How can you break this problem down into smaller problems?
● What is a subtask that Karel needs to do more than once in this problem?

[Big Idea AAP][Computational Thinking Practice 1]

Unit 2: Practice PT: Pair-Programming Paint (3 days, 3 hours)
Students will use the grid coloring functionality of Karel to create a digital image. They will then
embed this Karel program into their personal website portfolio.

Subsection EKs Lessons / Topics

Collaboration and
Communication

CRD-1.A.3 CRD-2.F.7
CRD-1.A.4 CRD-2.G.1
CRD-1.B.2 CRD-2.G.3
CRD-1.C.1 CRD-2.G.4
CRD-2.F.5 CRD-2.G.5
CRD-2.F.6 CRD-2.H.1

CRD-2.H.2

Collaboration
Diverse Perspectives
Bias Avoidance
Pair-Programming
Design and Planning
Program Documentation
Acknowledgement of Reused Code

Example Activity and Big Idea/Computational Thinking Practice
Create Your Own UltraKarel Image: Following the milestones and the pseudocode plan that
students have laid out, students use pair-programming to write the code for their final project.
They then test their code along the way to make sure they have solved each milestone. This
activity allows students to develop something completely unique with their programming skills
and implement a successful algorithm of their own design.

Students then reflect upon and answer the following questions:

1. Identify the programming language and purpose of your program.

6

2. Describe the incremental and iterative development process of your program. How did you
divide the program into smaller tasks and make a plan to complete them all?

3. Describe the difficulties and/or opportunities you encountered and how they were resolved
or incorporated.

4. Identify an algorithm that is fundamental for your program to achieve its intended purpose
and includes two or more additional algorithms.

5. Describe how each algorithm within your selected algorithm functions independently, as well
as in combination with others, to form a new algorithm that helps to achieve the intended
purpose of the program.

6. Identify an abstraction you developed, and explain how your abstraction helped manage the
complexity of your program.
[Big Idea CRD][Computational Thinking Practice 2]

Unit 3: Programming with Python (2 weeks, 10 hours)
This unit introduces students to the basics of Python, including variables, user input, control
structures, functions with parameters and return values, and basic graphics, how to send
messages to objects.

Subsection EKs Lessons / Topics

Programming
Languages

Lessons:
What is Code?
Uses of Programs

AAP-2.A.2
AAP-2.A.3
CRD-1.A.1
CRD-1.A.2
CRD-2.B.1

What is Programming?
Pseudocode
Programming Languages
Computing Innovations

Variables

Lessons:
Variables

AAP-1.A.1 AAP-1.B.2
AAP-1.A.2 AAP-1.B.3
AAP-1.A.3 DAT-1.A.1
AAP-1.A.4
AAP-1.B.1

Variable Names
Assignment Operators
Data Types
Variables as Abstractions

Arithmetic Expressions

Lessons:
Basic Math in Python

CRD-2.B.4 AAP-2.B.3
CRD-2.I.5 AAP-2.B.4
CRD-2.J.1 AAP-2.B.5
CRD-2.J.2 AAP-2.C.1
CRD-2.J.3 AAP-2.C.2
AAP-2.A.1 AAP-2.C.3

Program Behavior
Testing using Inputs
Arithmetic Expressions
Order of Operations
Modulus
String Concatenation

7

AAP-2.A.2 AAP-2.C.4
AAP-2.A.3 AAP-2.D.1
AAP-2.A.4 AAP-2.D.2

User Input

Lessons:
User Input
Mouse Events: Mouse Clicked
Key Events

AAP-1.C.4 CRD-2.C.5
AAP-3.A.6 CRD-2.C.6
AAP-3.A.9 CRD-2.D.2
CRD-2.C.2
CRD-2.C.3

Strings
User Input
Program Output
Events
Mouse and Key Events

Example Activity and Big Idea/Computational Thinking Practice
Computing Innovations (as part of Uses of Programs lesson): In this activity, students perform
an online search for examples of computing innovations that have had an impact on society,
economy, or culture. The computing innovations must consume, produce, and/or transform
data. A computing innovation can be a physical object like a self-driving car, non-physical
software like a picture editing software, or a non-physical concept like e-commerce.

Students
● practice searching and evaluating sources relevant to computing innovations
● write the definition of computing innovation in their own words
● list 5 items that ARE computing innovations and 5 items that are NOT computing

innovations. For each one, explain the reason why it is or is not a computing innovation
● identify the data used in at least one computing innovation and explain how the data is

consumed, produced, or transformed by the given computing innovation. [Computing
Innovation 1, Prompt B][Big Idea IOC][Computational Thinking Practice 5]

Unit 4: Python Control Structures (2 weeks, 10 hours)
In this unit, students learn how to use booleans and logical operators with control structures to
make more advanced programs in Python.

Subsection EKs Lessons / Topics

Comparison Operators

Lessons:
Booleans
Comparison Operators

AAP-2.E.1 AAP-2.F.4
AAP-2.E.2 AAP-2.F.5
AAP-2.F.1
AAP-2.F.2
AAP-2.F.3

Booleans
Relational Operators
Operands

Selection

Lessons:
If Statements
Random Numbers

AAP-2.G.1 AAP-2.I.2
AAP-2.H.1 AAP-2.L.3
AAP-2.H.2 AAP-2.L.4
AAP-2.H.3 AAP-3.E.2
AAP-2.I.1

Selection
Conditional Statements
Nested Conditionals
Equivalent Boolean Statements
Random Numbers

8

Iteration

Lessons:
While Loops

AAP-2.K.2 AAP-2.L.1
AAP-2.K.3 AAP-2.L.2
AAP-2.K.4 AAP-2.L.5
AAP-2.K.5

Iteration
Loops
Different but Equivalent Algorithms

Example Activity and Big Idea/Computational Thinking Practice
Better Password Prompt: Students write a program that uses a while loop to prompt a user for
a password. They keep prompting the user for the password, and if they get it correct, they
then break out of the loop. If they don't get it correct, they should give the user an error
message. This activity requires that students use multiple program statements in a specific
order to solve a problem.
[Big Idea AAP][Computational Thinking Practice 2]

Unit 5: Functions and Parameters (2 weeks, 10 hours)
In this unit, students learn to write reusable code with functions and parameters.

Subsection EKs Lessons / Topics

Functions and
Parameters

Lessons:
Functions and Parameters 1
Functions and Parameters 2
Functions and Return Values 1
Functions and Return Values 2

CRD-2.C.6 AAP-3.A.3
CRD-2.D.2 AAP-3.A.4
CRD-2.B.3 AAP-3.B.5
CRD-2.C.4 AAP-3.C.1
AAP-3.A.1 AAP-3.C.2
AAP-3.A.2 AAP-2.M.2

User and Application Input
Program Output
Procedures
Parameters
Return Values
Using Existing Algorithms

Example Activity and Big Idea/Computational Thinking Practice
Pool Table: Students write a program with a function that draws a pool ball. This function
should take as parameters, the color, the number that should go on the pool ball, and the
location of the center of the pool ball. Students need to consider the function abstractly as a
means for taking specific data via the parameters and creating a unique graphical output based
on those inputs.
[Big Idea DAT][Computational Thinking Practice 3]

Unit 6: Practice PT: Tell a Story (3 days, 3 hours)
In this project, students will write a Python program that tells a graphical story

Example Activity and Big Idea/Computational Thinking Practice
Tell a Story! In this activity, students write a Python program that tells a graphical story in at
least 4 scenes. Following the milestones and the pseudocode plan that students have laid out

9

prior to this exercise, students write the code for their final project. They iterate and test their
code along the way to make sure they have solved each milestone.
[Big Idea CRD][Computational Thinking Practice 4]

Unit 7: Basic Data Structures (2 weeks, 10 hours)
In this unit, students learn to write reusable code with functions and parameters.

Subsection EKs Lessons / Topics

Basic Data Structures

Lessons:
Tuples
Lists

DAT-1.A.1
AAP-1.A.1
AAP-1.C.1
AAP-1.C.2
AAP-1.C.3
AAP-1.D.6
AAP-1.D.7
AAP-1.D.8
AAP-2.N.2
AAP-2.N.1

Data Values
Lists and Elements
Indices
List Procedures

Data Abstractions

Lessons:
Lists
For Loops and Lists

AAP-1.D.1
AAP-1.D.5
DAT-2.E.4
AAP-1.D.2
AAP-1.D.3
AAP-1.D.4
DAT-2.E.2
DAT-2.D.4
DAT-2.E.5

Data Abstraction
Translating and Transforming Data
Filtering and Cleaning
Patterns

Traversing a List

Lessons:
Lists
For Loops and Lists

DAT-2.D.6
AAP-2.O.1
AAP-2.O.2
AAP-3.C.1
AAP-3.C.2
AAP-3.A.6
AAP-2.O.3
AAP-3.A.5
AAP-3.A.7
AAP-3.A.8
AAP-3.E.1

Extract and Modify Information
Traversing a List
Iteration Statements

Algorithm Efficiency

Lessons:
For Loops and Lists

AAP-2.O.4
DAT-2.D.3
AAP-2.O.5
AAP-2.P.1
AAP-2.P.2

Using Existing Algorithms
Search Tools
Linear Search
Binary Search
Algorithm Efficiency

10

List Methods AAP-2.P.3
AAP-4.A.1
AAP-4.A.3
AAP-4.A.7
AAP-4.A.8
AAP-4.A.9

Heuristics

Simulation

Lessons:
Simulation

AAP-3.F.1
AAP-3.F.2
AAP-3.F.3
AAP-3.F.4
AAP-3.F.5
AAP-3.F.6
AAP-3.F.7
AAP-3.F.8

Simulations as Abstractions
Bias in Simulations
Random Number Generators

Example Activity and Big Idea/Computational Thinking Practice
Librarian, Part 2: Students write a program to ask the user for an author's full name. Students
will then use list procedures to split the full name into individual names and then slice the list to
add the last name to a new list. Once the student has collected all of the last names, they will
sort them and then print the results. This program development requires students to use user
input data that can contain a variable number of names. The students must then use various
list techniques to manipulate the data.
[Big Idea DAT][Computational Thinking Practice 2]

Unit 8: Digital Information (3 weeks, 15 hours)
In this unit, students will learn about the various ways we represent information digitally. Topics
covered include number systems, encoding data, programmatically creating pixel images,
comparing data encodings, compressing and encrypting data. Students will work in pairs to
develop their own data encryption algorithms and attempt to crack the encryptions of their peers.
Their text encryption tool will be embedded in their portfolio websites.

Subsection EKs Lessons / Topics

Number Systems

Lessons:
Intro to Digital Information
Number Systems

CRD-2.C.1 DAT-1.A.7
CRD-2.D.1 DAT-1.B.1
CRD-2.J.2 DAT-1.B.2
CRD-2.J.3 DAT-1.B.3
CRD-2.I.4 DAT-1.C.1
DAT-1.A.2 DAT-1.C.2
DAT-1.A.3 DAT-1.C.3
DAT-1.A.4 DAT-1.C.4
DAT-1.A.5 DAT-1.C.5
DAT-1.A.6

Computing Devices
Abstraction
Program Input and Output
Bits and Bytes
Overflow Errors
Range of Value Limits
Binary and Decimal Systems

11

Data Compression

Lessons:
Data Compression
Lossy Compression

DAT-1.A.8 DAT-1.D.4
DAT-1.A.9 DAT-1.D.5
DAT-1.A.10 DAT-1.D.6
DAT-1.D.1 DAT-1.D.7
DAT-1.D.2 DAT-1.D.8
DAT-1.D.3

Lossless Data
Lossy Data
Digital and Analog Data

Cryptography

Lessons:
Cryptography

AAP-4.B.1
AAP-4.B.2
AAP-4.B.3
IOC-2.B.8
IOC-2.B.5

Decidable Problems
Computer Viruses
Encryption

Example Activity and Big Idea/Computational Thinking Practice
Guess the Passcode: Students first imagine they forgot their 4-digit passcode for their phone,
and need to guess the correct passcode. They develop a program to guess passcodes for
them to speed up the process. Once the correct passcode has been guessed, the program
should print out how many guesses it took to reach the correct one. This activity encourages
students to consider security issues which can be expanded to how we create a safer
computing culture.

Students discuss the following questions with a partner:
1. How many possible passcodes will you need to guess before you've guessed every

possible passcode?
2. Why is this dangerous for the security of your phone?
3. Imagine a hacker had access to your phone and had written a program to guess every

possible passcode until they had broken in. What defenses could we build into the
phone to keep this guess and check strategy from working? (What happens when you
guess incorrectly over and over again?)

4. Can you think of any guessing strategies that might be faster than starting at 0000 and
iterating all the way up to 9999

[Big Idea IOC][Computational Thinking Practice 6]

Unit 9: Practice PT: Steganography (3 days, 3 hours)
In this project, students will be implementing a form of cryptography known as Steganography.
Students can choose this practice PT or the following.

Example Activity and Big Idea/Computational Thinking Practice
Secret Image: Steganography- Students use a form of cryptography called steganography to
hide a secret image inside of a cover image. They need to develop two functions that create
filters, with one encoding and the other decoding. They are required to use a solid degree of
abstraction since several functions will be required for each part of the encoding and decoding
process. This also continues their consideration and discussions of privacy issues in
computing.
[Big Idea IOC][Computational Thinking Practice 3]

12

Unit 10: Practice PT: Create Your Own Image Filter (3 days, 3 hours)
In this project, students pair up with a partner to develop a novel image filter that can be applied
to any digital image of their choosing. They will describe their image filter, and their development
process, and embed their image filter along with its description on their personal portfolio
website. Students can choose this practice PT or the previous.

Example Activity and Big Idea/Computational Thinking Practice
Create an Image Filter: In this activity, students work with a partner to develop functions for
creating unique mage filters. They share their creative solutions designs with others and
incorporate feedback for improvement.
[Big Idea CRD][Computational Thinking Practice 1]

Unit 11: The Internet (2 weeks, 10 hours)
This unit explores the structure and design of the internet, and how this design affects the
reliability of network communication, the security of data, and personal privacy. Students will
learn about the protocols and algorithms used on the internet and the importance of
cybersecurity. Students will choose an innovation that was enabled by the Internet and explore
the positive and negative impacts of their innovation on society, economy, and culture. Students
will develop a computational artifact that illustrates, represents, or explains the innovation’s
purpose, its function, or its effect, and embed this artifact in their personal portfolio website.

Subsection EKs Lessons / Topics

Internet Hardware and
Addresses

Lessons:
Welcome to the Internet
Internet Hardware
Internet Addresses

CSN-1.A.1 CSN-1.A.8
CSN-1.A.2 CSN-1.B.3
CSN-1.A.3 CSN-1.B.4
CSN-1.A.4
CSN-1.A.7

Protocols
Computing Devices
Computer Networks
Bandwidth

Routing

Lessons:
Routing

CSN-1.A.5 CSN-1.E.2
CSN-1.A.6 CSN-1.E.3
CSN-1.B.5 CSN-1.E.4
CSN-1.B.6 CSN-1.E.5
CSN-1.B.7 CSN-1.E.6
CSN-1.E.1 CSN-1.E.7

Routing
Scalability
Fault-Tolerance
Redundancy

Packets and Protocols

Lessons:
Packets and Protocols

CSN-1.B.1 CSN-1.D.1
CSN-1.B.2 CSN-1.D.2
CSN-1.C.1 CSN-1.D.3
CSN-1.C.2 DAT-2.B.1
CSN-1.C.3 DAT-2.B.3

Datastreams
Packets
IP, TCP, UDP
HTTP
Metadata

13

CSN-1.C.4 DAT-2.B.5

Computing Systems

Lessons:
Sequential, Parallel & Distributed

DAT-2.C.7 CSN-2.A.6
DAT-2.C.8 CSN-2.A.7
CSN-2.A.1 CSN-2.B.1
CSN-2.A.2 CSN-2.B.2
CSN-2.A.3 CSN-2.B.3
CSN-2.A.4 CSN-2.B.4
CSN-2.A.5 CSN-2.B.5

Parallel Systems
Scalability of Systems
Sequential Computing
Parallel Computing
Distributed Computing
Efficiency of Solutions
Speedup

Impact of the Internet

Lessons:
The Impact of the Internet
Creative Credit and Copyright

IOC-1.A.1 IOC-1.E.2
IOC-1.A.3 IOC-1.E.3
IOC-1.A.4 IOC-1.E.4
IOC-1.A.5 IOC-1.E.5
IOC-1.B.1 IOC-1.E.6
IOC-1.B.2 IOC-1.F.1
IOC-1.B.3 IOC-1.F.2
IOC-1.B.4 IOC-1.F.3
IOC-1.B.5 IOC-1.F.4
IOC-1.B.6 IOC-1.F.5
IOC-1.C.1 IOC-1.F.6
IOC-1.C.2 IOC-1.F.7
IOC-1.C.3 IOC-1.F.9
IOC-1.C.4 IOC-1.F.10
IOC-1.C.5 IOC-1.F.11
IOC-1.E.1

Computing Innovations
Unintended Effects
Impact on Society
Rapid Sharing
Digital Divide
Citizen Science
Crowdsourcing
Creative Credit and Copyright

Cybersecurity

Lessons:
Cybersecurity

IOC-1.F.8 IOC-2.B.5
IOC-2.A.1 IOC-2.B.6
IOC-2.A.7 IOC-2.B.7
IOC-2.A.8 IOC-2.B.9
IOC-2.A.9 IOC-2.B.10
IOC-2.A.11 IOC-2.B.11
IOC-2.A.12 IOC-2.C.1
IOC-2.A.13 IOC-2.C.2
IOC-2.A.15 IOC-2.C.3
IOC-2.B.1 IOC-2.C.4
IOC-2.B.2 IOC-2.C.5
IOC-2.B.3 IOC-2.C.6
IOC-2.B.4 IOC-2.C.7

Legal and Ethical Concerns
Personally Identifiable Info (PII)
Digital Footprint
Authentication
Certificate Authorities (CAs)
Computer Viruses
Malware
Phishing
Keylogging
Rogue Access Points
Encryption

Example Activity and Big Idea/Computational Thinking Practice
Reflection: Unintended Effects - Students consider the WWW, targeted advertising and machine
learning and data mining as examples of computing innovations. They also learn that
responsible programmers try to consider the unintended ways their computing innovations can
be used and the potential beneficial and harmful effects of these new uses although it may not
be possible for a programmer to consider all the ways a computing innovation can be used.

14

They then consider Pokemon Go (from the previous video) or research another innovation that
had unintended effects. Students answer in their reflections:

1. What were the intended effects and what were the unintended effects?
2. Explain beneficial and harmful effects of at least one other computing innovation on

society, economy, or culture.

[Computing Innovation 2, Prompt A][Big Idea IOC][Computational Thinking Practice 5]

Packets and Protocols: The Story of the Internet - In their own words, students tell the story of
downloading an image from a website on the internet. They tell the story step by step of how
their computer finds the relevant server, requests information from the server, and receives it.
Students are required to include distinctions between the internet and the World Wide Web,
such as:

● The World Wide Web is a system of linked pages, programs, and files.
● HTTP is a protocol used by the World Wide Web.
● The World Wide Web uses the Internet.

[Big Idea CSN][Computational Thinking Practice 5]

Unit 12: Practice PT: The Effects of the Internet (3 days, 3 hours)
In this project, students will choose an innovation that was enabled by the Internet and explore
the positive and negative impacts of their innovation on society, economy, and culture. Students
will develop a computational artifact that illustrates, represents, or explains the innovation’s
purpose, its function, or its effect, and embed this artifact in their personal portfolio website.

Example Activity and Big Idea/Computational Thinking Practice
The Effects of the Internet: Students provide evidence of the extensive knowledge they have
developed about a chosen Internet-based innovation and its impact(s). Students include
citations, as applicable, within their written responses.

Within their computational artifact, students explain at least one beneficial effect and at least
one harmful effect the Internet-based innovation has had, or has the potential to have, on
society, economy, or culture. They also identify data privacy, security, or storage concerns for
the computing innovation.
[Computing Innovation 3, Prompt C][Big Idea IOC][Computational Thinking Practice 5]

Unit 13: Data (1 week, 5 hours)
In this unit, students will explore using computational tools to store massive amounts of data,
manipulate and visualize data, find patterns in data, and draw conclusions from data. Students will
consider how the modern wealth of data collection has impacted society in positive and negative
ways. Students will work in teams to investigate a question of personal interest and use public
data to present a data-driven insight to their peers. They will develop visualizations to
communicate their findings, and embed their visualizations in their portfolio websites.

15

Subsection EKs Lessons / Topics

Visualizing and
Interpreting Data

Lessons:
Getting Started with Data
Visualizing and Interpreting Data

DAT-2.A.1 DAT-2.D.5
DAT-2.A.2 DAT-2.D.6
DAT-2.C.1 DAT-2.E.1
DAT-2.D.1 DAT-2.E.2
DAT-2.D.2 DAT-2.E.3
DAT-2.D.3 DAT-2.E.5
DAT-2.D.4

Filtering and Cleaning Data
Patterns and Trends
Search Tools
Tables, Diagrams and Displays
Interactive Visualizations
Combining Data Sources

Collecting Data and Data
Limitations

Lessons:
Data Collection and Limitations

DAT-2.A.3 DAT-2.C.2
DAT-2.A.4 DAT-2.C.3
DAT-2.B.1 DAT-2.C.4
DAT-2.B.2 DAT-2.C.5
DAT-2.B.3 DAT-2.C.6
DAT-2.B.4 DAT-2.D.6
DAT-2.B.5 CRD-2.F.3

Metadata
Correlation
Using a Variety of Sources
Incomplete or Invalid Data
Bias
Surveys, Testing, Interviews

Example Activity and Big Idea/Computational Thinking Practice
Importance of Metadata: Students consider how metadata can increase the effective use of
data or data sets by providing additional information. They consider the importance of
metadata and reflect on why metadata is important for a data set, how metadata help in finding
specific data, and what metadata should reveal about the data.
[Big Idea DAT][Computational Thinking Practice 5]

Unit 14: Practice PT: Present a Data-Driven Insight (3 days, 3 hours)
In this project, students will work with a partner to answer a question of personal interest using a
publicly available data set. Students will need to produce data visualizations and explain how
these visualizations led to their conclusions. They will develop a computational artifact that
illustrates, represents, or explains their findings, communicate their findings to their classmates,
and embed their artifact in their personal portfolio website.

Example Activity and Big Idea/Computational Thinking Practice
Present a Data-driven Insight: Students consider how the amount of collected data impacts our
lives in ways that require considerable study and reflection for us to fully understand them.
Students explore a question that can be answered by analyzing a dataset. They form a
question and use visualization techniques to analyze the data to answer the question.
[Big Idea DAT][Computational Thinking Practice 6]

Unit 15 & 16: Explore MCQ Practice and Create Performance Task (3 weeks, 15 hours)
This time is set aside for students to prepare for the Explore MCQ and create their AP Create
Performance Task. Students will be given the chance to review course content and practice the
skills necessary to complete the Create Performance Task. The Create PT will be administered
over 9 hours of class time.

16

Subsection EKs Lessons / Topics

AP CSP Explore Task
Practice

IOC-2.A.2 IOC-2.A.10
IOC-2.A.3 IOC-2.A.14
IOC-2.A.4 IOC-1.F.11
IOC-2.A.5 CRD-1.A.1
IOC-2.A.6 CRD-1.A.2

Artifact Creation
Computing Innovations
Data Input and Output
Data Privacy and Security

Prepare for Create PT ALL

Review Course Content
Incremental Development
Documentation
Debugging
Collaborative Development

Create PT 9 hours of class time to conduct
Create PT

Example Activity and Big Idea/Computational Thinking Practice
Create Performance Task: Students develop a program of their choice. Their development
process includes iteratively designing, implementing, and testing their program. Students are
strongly encouraged to work with another student in their class.
[Big Idea AAP][Computational Thinking Practices 1-4]

Unit 17: Review for the AP Exam (1 week, 5 hours)
This unit gives students a review of the topics covered in the course and provides practice
solving AP Exam style multiple-choice questions.

Subsection Lessons / Topics

Prepare for Practice Exam Review course content
What to expect on the exam

Practice AP Exam

Cumulative Final AP Review
Multiple Choice Test

Unit 18: Creative Development (Remainder of the school year, 2-4 weeks, 10-20 hours)

17

In this unit, students will brainstorm their own final project, discuss their ideas with their peers,
scope their project to fit within the time constraints of the class, plan out milestones for
incremental development, and create their own final product from scratch. This project allows
students to think creatively about the applications of the concepts covered in the course, and
create something of personal value.

Subsection EKs Lessons / Topics

Design Thinking

Lessons:
Intro to Design Thinking

CRD-1.A.4 CRD-2.E.4
CRD-1.A.5 CRD-2.F.1
CRD-1.A.6 CRD-2.F.2
CRD-2.A.1 CRD-2.F.5
CRD-2.A.2 CRD-2.F.6
CRD-2.E.1 CRD-2.F.7
CRD-2.E.2 IOC-1.A.2

Computing Innovations
Development Process
Program Specifications
Design Phase
Communication
Collaboration

Brainstorm, Prototype &
Test

Lessons:
Prototype
Test

CRD-2.E.2 CRD-2.F.4
CRD-2.F.7 CRD-2.F.3
CRD-1.A.5 IOC-1.D.1
CRD-1.A.6 IOC-1.D.2
CRD-1.A.4 IOC-1.D.3
CRD-2.E.3 IOC-1.F.11

Development Process
User Testing
User Research
Diverse Perspectives
Iterative Development
Human Biases
Legal and Ethical Concerns

Project Prep and
Development

Lessons:
Project Prep and Development

CRD-1.B.1 Online Collaboration Tools

Example Activity and Big Idea/Computational Thinking Practice
User Interface Scavenger Hunt: Students search for 2 websites or apps, one with a good UI
and one with a not-so-good UI. They learn to discriminate features of solid UI design in terms of
accessibility and more before moving onto prototyping their creative project for the unit.
[Big Idea CRD][Computational Thinking Practices 6]

AP Computer Science Principles Supplemental Materials

Supplementary Units Prerequisite/Recommended Unit(s) # of activities

Extra Karel Practice Intro to Programming 12

Extra Karel Puzzles Intro to Programming 11

Karel Challenges Intro to Programming 7

18

Web Development After Pretest 79

Classes and Objects After Basic Data Structures 12

Additional Topics After Basic Data Structures 10

Project: Who Said It After Basic Data Structures 8

Project: Mastermind After Basic Data Structures 7

19

